Lines of minima are uniformly quasigeodesic
نویسندگان
چکیده
منابع مشابه
Extract segmentation lines of 3D model based on minima rule
This paper propose a novel algorithm pipeline to automatically extract the segmentation lines of 3D mesh accurately and efficiently. Our algorithm is based on the minima rule. The minima rule states that human perception usually divides a surface into parts along the concave discontinuity of the tangent plane. The algorithm pipeline has four steps. The first step is the estimate of discrete cur...
متن کاملJulia Sets Are Uniformly Perfect
We prove that Julia sets are uniformly perfect in the sense of Pommerenke (Arch. Math. 32 (1979), 192-199). This implies that their linear density of loganthmic capacity is strictly positive, thus implying that Julia sets are regular in the sense of Dinchlet. Using this we obtain a formula for the entropy of invanant harmonic measures on Julia sets. As a corollary we give a very short proof of ...
متن کاملIsolated periodic minima are unstable Les minima periodiques isolés sont instables
A classical result, studied, among others, by Carathéodory [C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, Chelsea, New York, 1989], says that, at least generically, periodic minimizers are hyperbolic, and consequently, unstable as solutions of the associated Euler–Lagrange equation. A new version of this fact, also valid in the nonhyperbolic case...
متن کاملUniformly convex Banach spaces are reflexive - constructively
We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...
متن کاملm at h . G T ] 1 1 Ju l 1 99 5 QUASIGEODESIC FLOWS IN HYPERBOLIC THREE - MANIFOLDS
Any closed, oriented, hyperbolic 3-manifold with nontrivial second homology has many quasigeodesic flows, where quasigeodesic means that flow lines are uniformly efficient in measuring distance in relative homotopy classes. The flows are pseudo-Anosov flows which are almost transverse to finite depth foliations in the manifold. The main tool is the use of a sutured manifold hierarchy which has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2008
ISSN: 0030-8730
DOI: 10.2140/pjm.2008.237.21